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Convergence of Quasi-Stationary to Stationary

Distributions for StochasticaIly Monotone Markov Processes

Moshe Pollak

Hebrew University

and

David Siegmund

Stanford University

Abstract. It is shown that if a stochastically monotone Markov process on [0,J) "

with stationary distribution H has its state space truncated by making all states in [B, ,61 "

absorbing, then the quasi-stationary distribution of the new process converges to H as

1.0 Intro ~tone

Let X(t), 0 < t < co, be a Markov process with state space [0,oo). H the process is

absorbing, its quasi-stationary distribution is defined to be the limit (if it exists) as t -. 00

of the distributon of X(t) given that absorption has not occurred by the time t (e.g. Seneta

and Vere-Jones, 1966). We shall consider a process which in fact has a limiting probability

distribution H in the sense that for every initial state X(O) = z,

lint P(X(t) < V) = H(V) (1)

at continuity points V of H, but which is made into an absorbing process by introduction

of the stopping time

r = = nf(t:X(t) ) (> 0). (2)

The absorbing process X(t A t), 0 < t < o, may have a quasi-stationary distribution

lim P{X(t) < VIl r > t),

and a natural question is whether this distribution converges to H as B --. co. More
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generally, we shall be interested in establishing under some conditions that as t, B -- co

P8 {Xt) < r> t)-H() (3)

for all z and continuity points v of H.

Our principal result, Theorem 1, asserts that (3) holds if the process X(t) is stochas-

tically monotone. (See Section 2 for the definition.) We also ask whether the hypothesis

of stochastic monotonicity implies the condition (1) and show that under a mild condition

of communicability it does (Theorem 3), although the limit H obviously need not be a

probability distribution.

Seneta (1980), Section 7.3, in the special case of Markov chains, has studied the con-

vergence of quasi-stationary distributions (assumed to exist) for a truncated state space to

the stationary distribution of the original chain. His methods and results are completely

different than ours.

Our motivation to consider the problem discussed here comes from our efforts to com-

pare competing stopping rules in a quickest detection problem (Pollak and Siegmund, 1984).

There we were concerned with two diffusion processes on [0, oo), which "detect" a change in

the drift of an underlying Brownian motion process if they ever reach a given high level B.

We were interested in evaluating the expected delay from the time that the change actually

occurs until it is detected, given that the change has not been falsely detected before its

occurrence. If the change occurs after the process has been running for some time, we must

evaluate the expected first passage of our (changed) diffusion processes to the level B, given

that they start in the quasi-stationary distribution. Since the quasi-stationary distribution

is rather difficult to evaluate in one case, and since B is almost always quite large, it is

natural to consider the quasi-stationary distribution as B -. co, or more generally the

convergence indicated in (3).

2. Reults. []

Let Xn, n = o, 1, 2,..- be a Markov process in discrete time with state space [0, co)

and stationary transition probabilities. We write P to denote probability for the process

with initial state Xe - x. )ds
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We shall call the process stochastically monotone if P{Xi > v) is nondecreasing and

right continuous in z for all If. (Right continuity is not usually included in this definition

and for some purposes is easily eliminated. Since it seems harmless in applications, we have

not tried to achieve the utmost generality.)

Theorem 1. Let X., n = 0,1, 2,--. be stochastically monotone, and let r be defined by

(2). For arbitrary z, y, B > 0 and m= 1, 2,---

P*(X. < yI > m) P{X. < . (4)

If (1) is also satisfied, then as B, m -. oo, for arbitrary z

P"(Xm < v I ra > } -. H() (5)

at all continuity points V of H.

Proof. We begin by proving (4), which is trivial for m = 1. Suppose it is true for m n,

and consider the case m = n + 1,

P"(xn+i <iI > +)- P{(X.+ < y r > n}
P{X.+ < BIr > n) (6)

>_[ P&{X. C: ds I r > n)P'{ <e

To perform the following manipulations it is convenient (although not necessary) to

introduce the dual probability P in the sense of Siegmund (1976), under which (X,, n -

0, 1,... is again a Markov chain andsatisfles

.I Vf{x _> 1) = iP{x _<R :5}
-%
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for all z, I/e [0, oo) x [0, oo). Then (6) can be continued as follows

I J . d. r > n)P{X < z)
+" .4)
.- = X e ds lr > n) iw{X, e df}

ji =X e do f (X. e d ^ I r > n)Ig 4C00) P.XA) (7)

" _(Xa e P'(X, < BAfI >n)
too) k1f(XECSdf)}rXn < f

The inequality follows from the inductive hypothesis if < B and because the conditional

probability equals I if f _> B. Hence the last expression in (7) equals

I r(X1  C j P{(X. e dz] JDP{X, e dz)PW(Xi > )

: f P'{X. e dz)P'(X, < V) = P'(X+, <v ),

which completes the proof of (4).
5%

From (4) and the hypothesis (1) it follows that

lim inf(X. < Vlrn > m,) _ H(V).
-'3

Hence it remains to prove the reverse inequality.

Let c > 0 and fix k so large that

P(X& < W) _< H(p) + e.

For arbitrary 0 < q < 1, by (4) and hypothesis (1) there exists y > 0 such that for all n, B

P'(X. < -11 ?, > n) ? P-(X. <7 ) > 1 - q.

Also for any 0 < I < I thereuxists Be such that for all B ?B

P { B > k) _ -.

4
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Hence for all m > k and B Be

P'{X. <V I r > m) = P"{X. < I r > m - k, r> m)

= Pm{r> m, X,,. <V Ir> m - k/P(r> m Ir> m-k)

fO) P'(XM._ E dZr > m - k)P{xk < V)
-< o 0,) P{(X,{ , E dZ r > mn - k)P,({ > k}

< P°(X < y)/P'{Xw-_ <7y1? > m - k)P"{r > kj)

< [H(v) + l-vi)(,-6).

Since e, ti, and 6 are arbitrary this completes the proof.

It is straightforward to extend Theorem I to the cue of a continuous time Markov

process. In fact, it is only the proof of (4) that m.es the discreteness of the time scale; and

this inequality is easily extended to continuous time by a limiting process.

More precisely, the Markov process X(t), 0 < t < oo, with stationary transitions is

called stochastically monotone if for some h > 0 and for all 0 < t < h, Ps(X(t) > V) is

nondecreasing and right continuous in z for all jr. Hence for any 0 < e < h the discrete

skeleton X(ne), n = 0, 1,..., is stochastically monotone, so equation (4) holds for it. If we

now add a smoothness asumption on the sample paths, say that they are right continuous,

we obtain a version of (4) by passing to the limit as e -. 0. For completeness we summarize

these results in the following theorem.

Theorem 2. Let X(t), 0 < t < oo, be stochastically monotone with right continuous

sample paths, and let r be defined by (2). For arbitrary x, V, B, and t >_ 0

P'{X(t) < i I r > t) - '(X() <v).

If (1) is also satisfied, then as B,t --. oo, for arbitrary z

P{X(t) <V Ir > 9) -* H(W)

at all continuity points i of H.

Remark. Simple coupling arguments show that birth and death and diffusion processes

are stochastically monotone, so Theorem 2 applies to them. In particular it applies to the

two diffusion processes which motivated our investigation. (See Lemma 1 of Pollak and

Siegmund, 1984.)

.. S



We now ask whether our two basic assumptions, stochastic monotonicity and existence

of a limiting distribution, are to some extent redundant. If X., n = 0, 1,-., (or X(t),

- 0 < t < oo) is stochastically monotone, with state space [0, co), it follows from Theorem 1

of Siegmund (1976) that there is a dual probability P under which X,, n = 0,1,-.-, is a

Markov chain with stationary transition probabilities which satisfy

e'lx. >: 1) = f,{x.5 < 1. (8)

By putting if = 0 we see that 0 is an absorbing state for the P process, so for z = 0

PoXn > W1 = P ={X = = ((Xh =0)) 1 (9)

which is increasing in n and hence has some limit, say N(y). Of course, A need not be

a probability. The following theorem shows that under an hypothesis of communicability,

P8 {X. > v} V (v) for arbitrary initial states z.

Theorem 8. Let z > 0. If lim,..= P{X, 2 z) = (z) > 0, then for all W lim.., P'{X.

> I} exists and equals 1(v).

We begin with a simple lemma.

Lemna 1. Let o=inf{n :X.= 0). If flim sup. { > n, X. z} > 0, then

P{+i = oo,X. <_ z i.o. > 0.

Proof of Lemma 1. Since

0 = oo,X X i.o.)= fl > n,X , 5z),

we havewe~ ~ ~~f 00e",{e ° X' <5 X i'°'} - .elim (f,_ b > n,.X. <5 z)

_limsup P'{ k > k,X1, <_ x) > 0.

Proof of Theorem S. In terms of the stopping time r0 of Lemma 1, the relation (8)
becom es r ( nZ V v i 5 n Y F ,X 5 x

- P*{X. Z W) + f*{+. > n, Xn _< z,
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so it suffices to show that
P"fro > n,X. <_ z) - 0

as n - oo. If this is not true, then by Lemma I

P" 0goo, Xn: _z i.o.) > 0. (10)

Also, by (9) and the assumption of the Theorem, there exist S > 0 and no such that for all

P(fo<_ no) = P{(Xno C > (z) >_ 6. (1)

Let .(') = inf{n: . < z) and for N =2,3,.-. let r,( inf{n :> N) +o . < Z}.

Also let = inf{n : n . '.(), X. =0) and put BN = { 1N) < oo, (N) - .(N) > n,).

Obviously {fo = oo, X. < z i.o.) C flNom BN, and by (1l)

n ~ (DN n 9L ' (Q N(i)-n, X, E d)) ${*.4 > no)

Hence Pf{io = o, X, < z i.o.} =0, which contradicts (10) and completes the proof.
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